您的位置:首页 > 教案设计教案设计

《小数性质》教案【10篇】

2025-08-25人已围观

《小数性质》教案【10篇】
  《小数的性质》教案1  【教学内容】  人教课标版小学四年级下册第58、59页的内容:小数的性质  【学情分析】  小数的性质是义务教育课程标准实验教科书四年级下册第58、59页的内容。是在学生学习下面是小编为大家整理的《小数性质》教案【10篇】,供大家参考。

  《小数的性质》教案1

  【教学内容】

  人教课标版小学四年级下册第58、59页的内容:小数的性质

  【学情分析】

  小数的性质是义务教育课程标准实验教科书四年级下册第58、59页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的.理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。

  【教学目标】

  知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。

  过程与方法:培养学生观察、比较、抽象和归纳概括的能力。

  情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。

  【教学重难点】

  重点:理解和掌握小数性质的含义。

  难点:小数基本性质归纳的过程。

  【教法与学法】

  1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

  2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。

  3、培养学生共同合作,相互交流的学习方法。

  【教学准备】

  教师:自作课件

  学生:收集的标签彩笔直尺和纸条

  【教学过程】

  一、创设情境,导入新课

  1、师:课前老师让同学们回忆生活,观察商品的标价签,并记录1—2种商品的价格,请谁来汇报一下?

  生:2、00元,师:是多少钱呢?生:2元。

  生:3、50元。师:是多少钱?生:3元5角

  师:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店三色标价是2、5元,右边一家则是2、50元,那你们去买的时候会选择哪一家呢?为什么?

  师:为什么2、5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。

  板书课题:小数的性质

  设计意图:联系生活实际,达到知识的迁移。

  二、提出问题、探索新知

  1、出示例1:下面请同学们利用直尺和桌面上的三张纸条分别量出0、1米,0、10米和0、100米长的纸条,各打上记号。各小组合作共同完成。

  老师巡视并引导学生观察米尺图

  2、各小组汇报:结合学生回答,教师板书:

  0、1米是1/10米,就是1分米

  0、10米是10/100米,就是10厘米

  0、100米就是100/1000米,就是100毫米

  因为1分米=10厘米=100毫米

  所以0、l米=0、10米=0、100米

  教师小结:这三个数量虽然各不相同,但表示大小相等、

  设计意图:学生根据小数的意义,从“0、l米、0、10米、0、100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。

  3、观察比较:教师指着“0、l米=0、10米=0、100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

  根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。

  教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简、小数中间的0不能去掉、

  师质疑:那整数有这个性质吗?

  学生分小组讨论,并举例证明得出结论。

  (师强调出小数与整数的区别)

  设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。

  4、练一练:

  (1)多媒体出示58页做一做:比较0、30与0、3的大小

  师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

  (2)师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作)

  (3)在两个大小一样的正方形里涂色比较。

  汇报结论:0、3=0、30

  师质疑:小数由0、3到0、30,你看出什么变了?什么没变?你从中发现了什么?(*均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0、3=0、30。)

  设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。

  5、小数性质应用、【继续演示课件“小数的性质”】

  (1)教学例3:把0、70和105、0900化简、

  思考:哪些“0”可以去掉,哪些“0”不能去掉?

  105、0900中“9”前面的“0”为什么不能去掉?

  (0、70=0、7;105、0900=105、09)

  教师强调:末尾和后面不同。

  (2)教学例4:不改变数的大小,把0、2、4、08、3改写成小数部分是三位的小数、学生独立完成,全班共同订正。

  (0、2=0、200;4、08=4、080;3=3、000)

  思考:“3”的后面不加小数点行吗?为什么?

  (3)你在哪些地方看到过小数末尾添0的数?(商场的标价上)

  三、巩固深化,拓展思维

  1、完成59页的做一做。

  重点指导学生说一说为什么有些“0”不能去掉和

  说一说为什么有些数的末尾添上“0”,原数就发生了变化、

  2、挑战自我。

  (1)谁能只动三笔,让下面三个数之间划上等号?

  6020=602=60200

  (2)每人写几个和3、200相等的数、

  设计意图:挑战自我的习题留给学生课后去完成,让学生的学习活动从课堂延伸到课后。

  四、全课小结

  1、这节课你有哪些收获?

  2、你对自己或同学有什么评价?

  五、布置作业、

  完成练习十1—3题。

  板书设计:

  小数的性质

  例1 1分米=10厘米=100毫米

  从右往左从左往右

  0、1米=0、10米=0、100米

  小数的末尾添上0或者去掉0,小数的大小不变。

  0、3=0、30=0、300

  例2化简小数。

  0、70=0、7 105、0900=105、09

  例3不改变数的大小,把下面各数写成三位小数。

  0、2=0、200 4、08=4、080 3=3、000

  《小数的性质》教案2

  教学内容:教材第5960页小数性质和数的改写、练一练,练习十一第6~10题。

  教学要求:

  1、使学生进一步认识小数的性质和小数点移动引起小数大小变化的规律,能应用小数的性质把小数改写成指定小数位数的小数或把小数化简。

  2、使学生能比较熟练地把一个数改写成万或亿作单位的数,或根据要求截取一个数的近似值。

  教学过程:

  一、揭示课题

  1、口算。

  指名口算练习十一第6题。

  2、揭示课题。

  这节课,我们复习小数的性质和数的改写。(板书课题)通过复习,要进一步认识小数的基本性质和小数点移动引起小数大小变化的规律,能比较熟练地进行数的改写。

  二、复习小数的性质

  1、复习小数的性质。

  (1)提问:小数的性质是什么?(板书小数的性质)谁能举例说明小数的性质?学习小数的性质有什么应用?

  (2)做练一练第1题。

  让学生先写出各数,然后指名回答,老师板书。

  (3)做练习十一第7题。

  出示卡片指名口答。 追问:为什么20末尾的0不能去掉?0.020里小数点后面的。去掉,会改变小数大小吗?为什么?

  2、复习小数点移动引起小数大小变化的规律。

  (1)提问:移动小数点的位置,小数大小会发生怎样的变化?(板书:小数点右移一位、两位、三位小数分别扩大10倍、100倍、1000倍左移一位、两位、三位小数分别缩小10倍、100倍、1000倍)

  (2)做练一练第2题。

  让学生观察每组数的排列,然后指名口答。追问:如果把一个数扩大或者缩小10倍、100倍、1000倍怎样移动小数点?

  (3)做练练第3题。

  让学生在练习本上依次写出各题得数,然后指名口答结果,老师板书。

  (4)做练习十一第8题。

  小黑板出示。指名一人板演,其余学生做在课本上。集体订正。

  三、复习数的改写

  1、复习数的改写。

  (1)做练一练第4题。

  让学生把第(1)、(2)题做在课本上。提问第(1)题的结果,老师板书。提问:怎样把一个较大的数改写成万或亿作单位的数?为什么要这样改写?提问第(2)题的结果,老师板书。提问:怎样写出一个数的近似数?指出:为了读写方便,我们常常把一个多位数改写成万或亿作单位的数。改写时只要在万位或亿位数的右下角点上小数点,并相应地添上万或亿作单位,也就是先把一个数缩小一万倍或一亿倍,再写上万或亿作单位,这样原数的大小不变。有时,根据需要往往要写出一个数的近似数。写近似数一般是看保留位数的后一位,用四舍五人的方法求出近似数,并注意近似数要用约等号。

  (2)把3.24956保留一位小数、两位小数、三位小数各是多少?

  指名一人板演,其余学生做在练习本上。集体订正,要求说明怎样想的。强调保留三位小数时要写出末尾的0,以表示精确度。

  2、做练习十一第10题。

  让学生做在课本上。小黑板出示第10题,学生口答练习结果,老师板书。注意讲清第(3)题怎样想的。追问:0.5万就是多少?0.6万呢?0.38亿呢?

  四、课堂小结

  这节课复习了哪些内容?谁来说说小数的性质和小数点移动

  引起小数大小变化的规律?怎样把较大的数改写成万或亿作单位的数?怎样写出一个数的近似数?

  五、课堂作业

  练习十一第9题。

  《小数的性质》教案3

  教学目标:

  1.掌握小数的性质,会应用小数的性质化简改写小数。

  2.培养学生合作能力和口语表达能力。

  3.体验学习数学的乐趣。

  教学重难点:

  引导学生积极探索,发现并理解小数的性质。

  教学过程:

  一.激趣引入:

  出示1 10 100

  师:这几个数熟悉吗?(熟悉),今天就让我们用100分的热情,10分的认真,上1节快乐的数学课。你们能做到吗?(能)。上课

  1.提出问题:

  首先,李老师想请你们来当小裁判,有两位同学发生了这样一件事:(看大屏幕)

  小方:我买了一个本子,用了0.30元

  小雨:我买了这样一个本子,只花了0.3元,比你便宜

  小方:不对,我们俩花的钱同样多

  2.引发猜想:

  师:你们来当当裁判,他们谁说的对?

  生:小方说的对。

  师:0.3=0.30(板书在黑板上)

  二.自主互助

  引导学生验证探索理解小数的性质

  我们学数学要有理有据,那么,你们的猜想0.3=0.30,对不对,还需要你们进行验证。

  1.小组合作验证猜想:(明确要求)

  A.选择一种你认为最拿手的方法验证。

  B.要求分工明确

  2.小组汇报:

  a涂格子的的方法验证。

  师:你们的方法真好,利用图形来验证,形象直观.

  b用长度单位来验证。

  0.3米=(3/10)米=(3)分米

  0.30米=(30/100)米=(30)厘米=(3)分米

  师:你们的结论是0.3米=0.30米。单位相同都是米。

  所以0.3=0.30.

  你们用常用的长度单位来验证再一次证明了0.3=0.30,还有其他的方法吗?

  c用人民币的单位验证。

  0.3元=(3)角

  0.30元=(30)分=(3)角

  师:你们用熟悉的钱数来验证,简洁好想,真不错。

  d.拓展发现:(还能写出这样的一组数)

  0.300米=(300)毫米=(30)厘米

  结果:0.3=0.30=0.300

  生:在小数的末尾添上“0”或去掉“0”,小数的大小不变。

  生:板书.师补充课题《小数的性质》

  师:这句话中,你认为哪个词是关键词,“末尾”。为什么?

  3.合作结论:小数的末尾添上“0”或去掉“0”,小数的大小不变。(再读一遍)

  三.快乐闯关

  第一关:下面各数末尾添上“0”后,发生了哪些变化?同桌之间互相说一说。说说你发现了什么?

  18 0.06 3.0 120 700 10.01

  第二关:下面的数如果末尾添上“0”,哪些数的大小不变?哪些数的大小会变?

  3.4 150 9.08 104.03

  31.00 42.1 52.01 35

  第三关:判断

  1、12.8和12.80的大小一样,但计数单位不一样。()。

  2、在小数上添“0”或去掉“0”,小数的大小不变。()

  3、908的未尾添上两个“0”,数的大小不变。()

  第四关:化简下面各数

  0.40 1.8500 2.900

  0.080 12.000 0.020

  第五关:不改变数的大小,把下面各数写成三位小数。

  0.9 30.04 5.4 8.18 14

  四. 总结:

  1.说说你的收获。

  2.评价一下自己和你的伙伴。

  五.板书设计:

  小数的性质

  小数末尾添上“0”或者去掉“0”,小数的大小不变。

  《小数的性质》教案4

  一、 说教材

  1.教学内容:苏教版小学数学第九册第三单元认识小数第三课时,“小数的性质”(课本第34-3 5页,例5—例6)。

  2.教材所处地位:本节是系统学习小数的开始,为后面学习小数四则计算做了必要的准备,起铺垫作用。

  3.教学目标:

  (1)让学生在现实的情景中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质化简或改写小数。

  (2)学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。

  4. 教学重点:掌握小数的性质。

  5. 教学难点:理解小数的性质。

  二、说教法

  通过直观、推理让学生充分感知,然后经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐 步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。

  三、说学法

  通过本节教学使学生学会运用直观的教学手段理解掌握新知识,学会有顺序地观察问题、对比分析问题、 概括知识及联想的方法。

  四、教学程序

  (一)情景导入激趣揭题

  (课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0. l00米、0.10米、0.1米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。

  同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)

  这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

  (二)讲授新课

  1、教学例5,初步感知

  (1)出示例五情景图,两位同学购买学习用品后在交流购物情况,你从图中能获取哪些信息?(小明:“我买1枝铅笔用了0.3元”。小芳:“我买1块橡皮用了0.30元”。)

  (2)提出问题:橡皮和铅笔的单价相等吗?为什么?你能想办法证明吗?先独立思考,有想法后4人小组交流。

  (3)全班交流,归纳方法:

  ①用具体钱数解释:0.3元和0.30元都是3角,所以0.3元=0.30元

  ②结合计数单位理解:0.3是3个0.1,0.30也可以看作3个0.1,所以0.3=0.30

  ③用图表示:把两个同样大小的正方形分别*均分成10份、100份,其中的3份、30份分别用0.3、0.30表示。因为阴影部分大小相同,所以0.3=0.30。

  (4)感知与体验:同学们想出了多种办法都能证明0.3元=0.30元,说明这两个小数确实相等。

  教师引读0.3元=0.30元,谈话:从左往右看,小数末尾有什么变化?小数的大小怎样?你有了什么想法?使学生初步体验小数的末尾添上“0”,小数的大小不变。

  2、教学“试一试”,加深体验

  比较0.100米,0.10米和0.1米的大小。

  首先让学生拿出事先准备好的米尺(10厘米以上),在米尺上找出100毫米、10厘米、1分米是同一点,说 明:100毫米=10厘米=1分米。

  请同学们看米尺想,独立填写下表,集体讲评。

  板书:因为100毫米=10厘米=1分米

  所以0.100米 =0.10米=0.1米

  在这里应用直观演示法,变抽象为具体。

  A.从左往右看,是什么情况?(小数的末尾去掉“0”,小数大小不变)。

  B.从右往左看是什么情况?(小数的末尾添上“0”,小数大小不变)。

  C.由此,你发现了什么规律?(小数的末尾添上“0”或去掉“0”,小数的大小不变)。

  在这里应用了比较法,便于发现规律,揭示规律,总结性质。

  小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。

  为了帮助学生对小数性质的理解,教师强调指出:为什么在小数的末尾添“0”或去“0”,小数的大小就不变 呢?(因为这样做,其余的数所在数位不变,所以小数的大小也就不变。举例说明)小数中间的零能不能去掉?能不能在小数中间添零?(都不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。举例 说明)整数是否具有这个性质?(没有,理由同上第二点)。

  3、教学例6

  (1)示情景图,让学生观察,并从图中能看出哪些信息。

  (2)根据题目的要求各自在书上填空。

  (3)提问:3.05元中的“0”为什么不可以去掉?

  根据这个性质,通常可以去掉小数末尾的“0”,把小数化简。

  试一试

  不改变小数的大小,把0.4、3.16 、 10改写成三位小数。

  0.4=3.16=10=

  改写这三个数时应用了什么知识?为什么给三个数填上的“0”的个数不同?10是整数怎样把它改写成大小不变的三位小数?

  强调:改写小数时一定要注意下面三点:

  A.不改变原数的大小;

  B.只能在小数的末尾添上“0”;

  C.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添“0”。

  (三)巩固练习

  1. 练一练第1题

  完成后观察每组中的两个数,你有什么发现?

  (0.1和0.10,0.2和0.20,0.3和0.30每组里的两个数对应于数轴上的同一个点,说明小数的性质确实存在的。0.1=0.10,数轴上这个点还可以用哪些小数来表示)

  2.练一练第2题

  为什么0.5和0.50的大小相等,而0.5和0.05的大小不等?

  (四)课堂作业:练习六第3题----第5题

  (五)总结延伸

  通过本课的学习,你有什么收获和大家分享?我们是怎样探索小数的性质的?

  在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。

  附板书设计:

  小数的性质

  例5 0.3元=0.30 元

  比较0.100米、0.10米和0.1米的大小。

  因为100毫米=10厘米=1分米

  所以0.100米=0.10米=0.1米

  0.100=0.10=0.1

  小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。

  例6 2.80元=2.8元 4.00元=4元 10.50元=10.5元

  《小数的性质》教案5

  一、教学过程

  (一)引入新课

  1.同学们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。

  2.揭示课题:小数的意义与读写(板书:小数的意义与读写)

  (二)展示目标(见教学目标1)

  二、自主学习

  (一)出示自学提纲

  自学提纲(自学教材P50页例1,并完成自学提纲问题,将不会的问题做标注)

  1.把1米*均分成10份,每份是多少米?3份呢?

  2.分母是10的分数可以写成几位小数?

  3.把1米*均分成1000份,每份长多少?分母是1000的分数可以写成几位小数?

  4.思考什么是分数?什么是小数?

  (二)学生自学(学生对照自学提纲,自学教材P49页例1,并完成自学提纲问题,将不会的问题做标注)

  (学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

  三、合作探究

  (一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

  (二)师生互探

  1.解答各小组自学中遇到不会的问题。

  (1)让学生提出不会的问题并解决。

  (2)教师引导学生解决学生还遗留的问题。

  2.交流小数的意义。

  (1)这是把1米*均分成了多少份?根据以上学习你能知道什么?学生以小组为单位进行讨论。

  (2)抽象。概括小数的意义。

  把1米看成一个整体,如把一个整体*均分成10份。100份。1000份……这样的一份或几份可以用分母是多少的分数表示?引导学生答出可以用十分之几。百分之几。千分之几这样的分数表示。

  (3)什么叫小数?引导学生讨论。

  (4)师生共同概括:

  分母是10.100.1000……的分数可以写成小数,像这样用来表示十分之几。百分之几。千分之几……的数叫做小数。(投影出示)。小数是分数的另一种表现形式。

  3.交流小数的计数单位。

  四、达标训练

  1.填空。

  (1)0.1是( )分之一,0.7里有( )个0.1。

  (2)10个0.1是( ),10个0.01是( )。

  (3) 写成小数是( ), 写成小数是( )。

  2.课本做一做。

  3.判断:

  (1)0.40里面有4个0.01。( )

  (2)35克=0.35千克 ( )

  4.把小数改写成分数。

  0.9 0.09 0.0359

  课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

  五、堂清检测

  (一)出示堂清检测题。

  1.填空题。

  (1)小数点把小数分成两部分,小数点左边的数是小数的( )部分,小数点右边的数是它的( )部分。

  (2)小数点右边第二位是( ),计数单位是( )。

  (3)一个小数,它整数部分的最低位是( )位,小数部分的最高位是( )位。它们之间的进率是( )。

  (4)千分位在小数点( )边第( )位,它的计数单位是( )。小数点右边第一位是( )位,它的计数单位是( )。

  (5)有一个数,百位和百分位上都是5,十位个位和十分位上都是0,这个数写作( ),读作( )。

  2.读出下面各数。

  0.78 5.7 0.307 8.005 6600.506 88.188

  3.写出下面各数。

  零点一二 七点七零七 二十点零零零九

  四千点六五 零点九一八 五十三点三五三

  (二)堂清反馈:

  布置作业

  教材P55页 1.2.3题。

  板书设计

  小数的意义与读写

  十分之一---------------- 0.1

  百分之一----------------0.01

  千分之一----------------0.001

  分母是10.100.1000……的分数可以写成小数,

  像这样用来表示十分之几。百分之几。千分之几……的

  数叫做小数。

  《小数的性质》教案6

  教学内容:人教版数学第八册第四单元“小数的性质”

  教学目标:

  1、初步理解小数的基本性质,并应用性质化简和改写小数。

  2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。

  3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。

  教学重点:

  让学生理解并掌握小数的性质。

  教学难点:

  能应用小数的性质解决实际问题

  教学过程:

  一、谈话导入、课前质疑

  1、师:今天老师给同学们准备了一个小魔术,我们来看看。

  这个数认识吗?几呀?出示数字卡片:1

  我能让这个数变大,看仔细哟。(添了一个0)

  这个1的末尾添了一个0,这个数发生了什么变化?

  老师还能把这个数变小,知道怎么变吗?就要把末尾的0(去掉),看着啊。

  看来,我把整数末尾的0去掉,这个数就缩小。那100去掉末尾两个0,大小怎么变化的?(缩小了100倍,好极了)

  师:刚才我将这个整数的末尾添上0,这个整数就变大了,我又将这个整数的末尾去掉0,这个整数就变小了。

  2、师:接下来再变一个小数的魔术。这是几?(0.1)看着啊,老师还能把它变大。变大了吗?

  这可奇怪了,刚才整数的末尾添上0,这个数会变大,整数的末尾去掉0,这个数就会变小,那我在小数的末尾添上0或去掉0,小数的大小变不变呢?你认为呢?

  在小数的末尾添上或去掉0,小数的大小不变,这只是大家的猜想,这个猜想对不对呢?这就需要大家一起来验证一下。

  板书:猜想验证

  二、探究新知、课中释疑

  1.探究0.1米,0.10米,0.100米的大小

  (1)有以有的知识来解释一下这三个数的大小。

  请比较一下它们的大小。

  板书:1分米=10厘米=100毫米

  (2)导入例1:

  你能把它们都写成用米做单位的小数的形式吗?必须体现它们的原先单位。

  导:分米和米有什么关系?厘米、毫米呢?

  根据学生回答归纳演示:

  1分米是1/10米,写成0.1米

  10厘米是10个1/100米,写成0.10米

  100毫米是100个1/1000米,写成0.100米

  并板书:01米 0.10米 0.100米

  那0.1米、0.10米、0.100米之间大小有什么关系呢?

  学生很快回答后课件演示。并在他们之间加上等号。

  我们还可以用重合法比较一下。(课件演示)

  (3)指导看黑板:

  1分米=10厘米=100毫米

  0.1米=0.10米=0.100米

  提问:这说明了什么问题?

  请大家仔细观察这个等式,可以从左往右看,再从右往左看,什么变了?什么没变?在什么地方多(少)0?在这个小数的什么位置?多(少)0还可以怎么说?

  小数的末尾添上0大小不变,去掉0大小也不变。是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。

  2.教学例2。

  (1)比较1.30和1.30的大小。

  导:想想0.30表示什么意思?0.3呢?应该涂多少格?

  学生涂完色问:你为什么这样涂?之后演示涂色过程。

  (2)同桌商量比较,汇报结论。

  问:谁涂的面积大?1.30和.1.3的大小怎样?你是怎么知道的.?

  直观比较法:看上去都一样大;

  理论推导法:1.30是130个1/100,也是13个1/10;1.3是13个1/10。

  课件演示重合图形。(在原板书下再板书:1.30=1.3)

  (3)观察思考

  观察板书1.30=1.3

  这个例子说明了什么?看来不仅仅是个特例,再次验证我们的猜测。

  3、讨论归纳

  教师指着板书说:你能把上面的研究结论归纳成为一句话吗?4人小组之间讨论一下,想想该怎么说才比较完整?

  教师提问几个小组代表让其归纳,不够完整可以由其他小组代表补充。得出小数的性质:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质.(课件展示)

  4、指导阅读。

  讲述:书上也证实了我们的研究,并把它称为“小数的性质”。齐读小数的性质。

  5、质疑问难:(判断)

  你们对这句话理解的够不够透彻呢?挑战一下你们。(以下题目陆续出现)

  (1)一个数的末尾添上“0”或去掉“0”,这个数的大小不变。

  举例说明后返回小数的性质,红字强调“小数”。

  (2)小数点的后面添上“0”或去掉“0”,小数的大小不变。

  举例说明后返回小数小性质,红字强调“末尾”。

  (3)10.50=10.5=10.500 判断后返回小数小性质强调“大小不变”。

  三、巩固运用、交流反思

  小数的性质有什么作用呢?

  强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.

  l.出示例3:把0.70和105.0900化简。

  思考:哪些“0”可以去掉,哪些“0”不能去掉?

  (1)提问:0.70你认为可以怎么化简才能大小不变?

  (2)学生自己完成。指名回答,让其说说这样做的根据是什么?

  (3)为什么105.0900的5左边的0不能去掉呢?(强调小数的性质中“小数的末尾的0”。)

  (4)练习:下面的数,哪些“0”可以去掉?哪些¨0“不能去掉?

  0.40 1.820 2.900 0.080 12.000

  回答后小数末尾的0红色闪现。

  问12应该去掉0后是多少?还可以怎样表示?

  强调:12去掉0后,小数部分没有数,可以把小数点也去掉。

  过渡:同样,应用小数的性质,我们还可以根据需要,把一个数改写成含有指定小数位数的小数

  2.出示例4:。

  不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。

  想想可以怎么做?

  (1)学生自己完成。

  (2)大家这样做的根据是什么?3能不能直接在后面添0?

  (3)练习:下列数如果末尾添”0“,哪些数的大小不变,哪些数的大小有变化?

  3.4 18 0.06 700 3.0 4.90

  整数和小数用不同的颜色区分。

  如果整数想改成大小不变的小数,必须先做什么?(先添上小数点,再添0)

  五、课堂小结

  1.这节课你学到了哪些知识?有哪些收获?

  《小数的性质》教案7

  教学内容:教材p39页例3,例4.练习十

  教学目标

  知识与技能:通过自主探究学会小数的化简和改写小数。

  过程与方法:运用所学知识解决问题,养成探求新知的良好品质。

  情感态度与价值观:感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。

  教学重点:学会化简小数和改写小数。

  教学难点:理解小数末尾。

  教法:启发引导法

  学法:观察、比较、合作交流

  教学用具:多媒体课件。

  教学过程

  一、定向导学:2分

  (一)准备

  1、说一说小数的性质,“小数末尾”指什么?

  2、揭示课题:小数的性质的应用

  (二)展示目标

  会运用小数的性质将小数进行化简和改写。

  二、自主学习:(5分钟)

  (一)化简小数

  内容:内容:课本p39例3

  时间:2分钟

  方法:将例3 补充完整,再完成下面练习。

  练习1、化简下面小数

  0.40 1.850 20.900 0.080 103.00 1.180 0.480

  (1--7组的4号发言,1号评价)

  (二)改写小数

  内容:内容:课本p39例4

  时间:3分钟

  方法:将例4 补充完整,再完成下面练习。

  练习2、把下面小数改写成三位小数。

  0.4 1.05 20.100 0.08 10 8.18 10.08

  (1--7组的5号发言,2号评价)

  三、合作交流(5分)

  “化简小数”和“小数的改写”时,小数的大小改变了吗?为什么?

  四、质疑探究:5分钟

  在运用小数的性质解决问题,关键是什么不能改变?

  五、小结检测:23分钟

  1、课堂小结:)

  谈谈你有什么收获?有什么感受?还有问题吗?

  2、检测:

  a、化简下面个数

  3.90.300 1.8000 500

  5.7800.0040102.02060.0

  b、不改变数的大小,把他们写成三位小数。

  (1)3.090.61100

  c、把相等的数用线连起来。

  6.07 10.3

  10.300 6.070

  0.2 0.900

  200.0700 0.02

  0.9 200.07

  3、堂清作业:课本p41、4.5

  板书设计 :

  小数性质的应用

  例3、化简小数。 (小数的末尾)

  0.70=0.7 105.0900=105.09

  例4、不改变数的大小,把下面各数写成三位小数。

  0.2=0.200 4.08=4.080 3=3.000

  整数改写小数,要点小数点。

  《小数的性质》教案8

  教学目标:

  1、知识目标:引导学生初步理解小数的性质;能运用小数的性质正确地化简小数和改写小数。

  2、能力目标:激发学生积极主动的探究精神,培养学生归纳、分析的能力。

  3、情感目标:培养学生爱学数学的情感。

  教学重点:

  理解小数的末尾添上“0”或去掉“0”,小数的大小不变的道理。并正确运用这一性质解决相关问题。

  教学难点

  掌握在小数部分什么位置添“0”去“0”,小数大小不变。

  教具准备:

  学习纸“小魔术”纸卡多媒体课件

  课时:1课时

  教学过程:

  一、情景导入(小魔术)

  1、师:同学们,第一次给你们上课,作为礼节,我给大家表演个魔术——数字的变化。看这是数字1?等会你们一起小声喊:1,2,3,大,老师就可以把这个数变大了。信不信?

  生:1,2,3,大。

  师:把1变成10,10和1比扩大了10倍,……

  2、老师还有一个数0.1,我们再来试一试。

  引起学生的冲突:到底变大了吗?

  (设汁意图:是把枯燥的数学知识贯穿在小学生喜闻乐道的游戏中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。)

  这节课,我们就来研究小数末尾“0”对小数的大小的影响。也就是我们今天要学习内容——小数的性质。

  二、探求新知

  (一)教学例1

  1、师:0.1米、0.10米、0.100米,他们到底会不会相等呢?

  师:请拿出你的学习纸把第一题完成。

  汇报:请学生上台展示。填空、比较发现一样,从而得出0.1米=0.10米=0.100米。

  教学中让学生说说你是怎样找出0.1米、0.10米、0.100米。

  (0.1米是一位小数,它的计数单位是1/10,有1个1/10,也就是说0.1米=1/10米,把1米*均分成10分,1份就是1分米。所以0.1米=1分米。

  0.10米是两位小数,它的计数单位是1/100,有10个1/100,也就是说0.10米=10/100米,把1米*均分成100分,1份就是1厘米,10份是10厘米。所以0.10米=10厘米。

  0.100米是三位小数,它的计数单位是1/1000,有100个1/1000,也就是说0.100米=100/1000米,把1米*均分成1000分,1份是1毫米,100份就是100毫米。所以0.100米=100毫米。)

  因为1分米=10厘米=100毫米所以0.1米=0.10米=0.100米

  师:0.1米=0.10米=0.100米(板书)这三个长度是一样的,都是以“米”为单位,我们就可以把数抽象出来0.1=0.10=0.100。

  (设计意图:这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识)。

  仔细观察这组小数,你有什么发现?

  生:小数的末尾添上“0”,小数的大小不变。

  师:同学们的眼光真锐利。小数的末尾添上“0”,小数的大小不变。我现在有个疑问,其它的小数也有这样的特点吗?

  师:现在请同学们翻开学习纸,根据方格图,自己想一组小数把它表示出来。

  学生操作,交流汇报。

  课件展示。

  (教师在学习研究中要加强指导)

  2、师:现在请同学们观察上面的题目中的小数,你能说出几组和它们类似的小数吗?

  学生说说。

  师:能说出这么多组,你们一定发现了什么规律吧?(交流,汇报)

  总结:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  (设计意图:这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。)

  3、联系生活,再现新知:还有同学们在商场看到货物的标价如:这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。

  (二)小数性质的应用

  1、教学例2

  师:现在我们认识了小数的性质,那么应用小数的性质,我们可以根据需要对小数进行改写。

  电脑演示:化简下面的小数。0.70=105.0900=

  教学0.70=0.7

  问:①你是怎样化简的?(根据小数的性质,去掉小数末尾的“0”就可以把小数化简)

  ②0.70与0.7它们的大小不变,但意义相同吗?

  (不同,0.70表示70个1/100,0.7表示7个1/10)

  教学105、0900=105.09

  问:小数里的其他“0”可以去掉吗?为什么?(不可以,大小改变。师要强调末尾)

  2、教学例3

  电脑演示:不改变数的大小,把下面各数写成三位小数。

  0.2=4.08=3=

  师:你是如何把它改写成三位小数的?(根据小数的性质,在小数的末尾添上“0”小数的大小不变)

  师:3如何改写成三位小数?这个小数点不点的话可以吗?

  注意:

  A、在小数的末尾添“0”。

  B、当这个数是整数时,在整数个位的右下角点上小数点,再添“0”。

  师:应用小数性质时,应注意什么?(小数、末尾)

  三、巩固练习

  课本59页的做一做。

  2、开火车的形式回答59页的做一做。

  问:你是怎样化简和改写这些数的?

  四、全课小节

  1、这节课你学到了什么?

  小数的末尾添上“0”或去掉“0”,小数的大小不变。

  2、我们是怎样探索小数的性质的?

  在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。

  板书:小数的性质

  小数末尾“0”对小数的大小的影响

  小数的末尾添上“0”或去掉“0”,小数的大小不变。

  0.1米=0.10米=0.100米

  0.1=0.10=0.100

  《小数的性质》教案9

  教学内容

  教科书第80~81页,练习十六的习题.

  教学目的

  1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别.掌握能被2、5、3整除的数的特征.会分解质因数.会求最大公约数和最小公倍数.

  2.使学生在理解的基础上掌握分数、小数的基本性质.

  教学过程

  一、数的整除

  1.整除的意义.

  教师:想一想,什么叫做整除?指名回答.

  教师进一步强调:整除中说的数是什么数?(整数.)

  商是什么数?(整数.)有没有余数?(没有余数.)

  教师:什么叫做除尽?(两数相除,余数是0.)

  整除和除尽有什么联系和区别?指名回答.教师根据学生的回答,整理出下表:

  被除数 除数 商 余数

  整除 整数 不等于O的整数 整数 O

  除尽 数 不等于O的数 数 O

  教师:可以看出整除是除尽的一种特殊情况.

  2.能被2、5、3整除的数的特征.

  教师:我们已经学过能被2、5、3整除的数的特征,同学们还记得吗?指名说一说.然后提问:

  能被2、5整除的数,在判别方法上有什么共同的地方?(都根据个位数进行判别.)

  能被3整除的数,在判别方法上与能被2、5整除的数有什么不同?气根据各个数位上的数之和进行判别.)

  教师:什么叫做奇数?什么叫做偶数?

  根据什么来判断一个数是奇数还是偶数?

  3.约数和倍数.

  教师:根据整除的概念可以得到约数和倍数的概念.什么叫做约数?什么叫做倍数?指名说一说.(如果a能被b整除,a就叫做b的倍数,b就叫做a的约数.)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:

  能说6是约数,15是倍数吗?应该怎么说?

  教师说明:在研究约数和倍数时,我们所说的数一般只指自然数,不包括0.

  教师:一个数的约数的个数是怎样的?(有限的.)

  其中最小的约数是什么数?最大的约数是什么数?(1,这个数本身.)

  一个数的倍数的个数是怎样的?(无限的.)

  其中最小的倍数是什么数?(这个数本身.)

  做练习十六的第2题.让学生直接做在书上.教师可以说明做的方法:在含有约数2的数下面写2,在3的倍数下面写3,在能被5整除的数下面写5,然后再进行判断.集体订正.

  4.质数和合数.教师指名说一说质数、合数的概念.可有意识地让学习有困难的学生说,其他同学进行补充.

  教师:怎样判断一个数是质数还是合数?(检查这个数有约数的个数,或查质数表.)指名说一说30以内有哪些质数.

  让学生进行判断:一个自然数如果不是质数,那么一定是合数.学生判断后,教师说明:1既不是质数,也不是合数.

  5.分解质因数.

  指名说一说质因数、分解质因数的含义.

  做练习十六的第5题.学生独立解答,教师巡视,集体订正.

  6.公约数、最大公约数和公倍数、最小公倍数.

  (1)复习概念.

  教师:什么叫做公约数?什么叫做最大公约数?(几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数.)怎样求几个数的最大公约数?让学生举例说明.

  什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?让学生举例说明.

  教师:什么样的数叫做互质数?(公约数只有1的两个数叫做互质数.)

  质数和互质数有什么区别?(质数是一个数,只有1和它本身两个约数;互质数是两个数,只有公约数1.)

  两个不同的质数一定互质吗?(两个不同的质数一定互质.)

  互质的两个数一定都是质数吗?(不一定,如4和9互质,4、9都是合数.)

  (2)课堂练习.

  做练习十六的第1题.先让学生独立判断,集体订正时,让学生说一说判断的理由.

  做练习十六的第4题.学生独立解答,教师巡视,集体订正.教师根据前面的教学,整理出教科书第80页的概念联系图.也可以把该图变化成如下形式.

  《小数的性质》教案10

  学生填完结果并订正

  第二教时

  2、师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作,想的办法越多越好,老师提供两个大小一样的正方形,一张数位顺序表)

  3、生1:在两个大小一样的正方形里涂色比较。

  (2)连线。把相等的数用直线连起来。

  第五教时

  第六教时

  反馈:

  第九教时

  第十教时

  第十二教时

  教学内容:教科书P78~79的内容。

  教学目标:

  1、使学生通过整理和复习,弄清本单元学习了哪些知识,更牢固地掌握小数的意义和性质。

  教学目的:

  教学重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点、数大小变化的规律。

  教学难点:用“四舍五入”法按要求求出小数近似数。

  教学过程:

  一、揭示课题

  这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。

  二、复习小数的意义

  1、做整理和复习第1题(

  (1)学生在书上填写,集体订正。说一说这些小数的意义。

  (2)说一说小数的意义是什么?

  问:一位小数、两位小数、三位小数……各表示几分之几的数?

  2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

  (2)填空。

  0.1里面有( )个0.01。 10个0.001是( )。

  10个0.1是( )。 0.1里有( )个0.01。

  三、复习小数的性质和小数的大小比较

  1、练习。

  (1)把下面小数化简。

  4.700 16.0100 8.7100 14.00

  (2)不改变数的大小,把下面的数写成两位小数。

  4.2 13.1 21

  ①学生做,指名板演,集体订正。

  ②问:做题时是根据什么来做的?什么

  (3)、做整理和复习第2题。

  0.1 0.012 0.102 0.12 0.021

  (2)按要求从小到大排列。

  四、复习小数点位置移动引起小数大小变化的规律

  1、做整理和复习第3题。

  (1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

  问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

  (2)学生练习,指名回答。

  2、练习。

  (1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。

  (2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。

  五、复习求小数的近似数和整数的改写

  1、把下面小数精确到百分位。

  0.834 2.786 3.895

  (1)学生做,指名板演。

  (2)让学生说一说怎样求一个小数的近似数。

  2、(1)把下面各数改写成“万”作单位的数。

  486700 521000

  (2)把下面各数改写成“亿”作单位的数。

  460000000 7189600000

  学生在练习本上做,指名板演,说一说怎样把一个较大数改写

  成“万”或“亿”作单位的数。

  3、把下面各数改写成“万”作单位的数,并保留一位小数。

  67100 209500

  (1)学生在练习本上做,指名板演。

  (2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

  (3)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

  (4学生练习,集体订正。

  (5)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

  了。

  六、全课总结

  这节课复习了什么内容?

  怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

  【作业设计】

  1、0.45表示( )。

  2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。

  3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是(

  )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

  4、在○里填“>”、“<”或“=”。

  16.36○16.63 0.36万○3600

  0.97○1.01 0.23亿○2100万

  5、100千克稻谷可出大米76千克,*均每千克稻谷出大米多少千克?

  10000千克稻谷可出大米多少千克?

  推荐访问:小数

  教案

  性质

  《小数性质》教案【10篇】

  《小数的性质》教案1

  《小数的性质》教案

随机图文